首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   66篇
  2021年   10篇
  2020年   8篇
  2019年   7篇
  2018年   9篇
  2017年   8篇
  2016年   10篇
  2015年   24篇
  2014年   22篇
  2013年   28篇
  2012年   49篇
  2011年   45篇
  2010年   26篇
  2009年   17篇
  2008年   34篇
  2007年   42篇
  2006年   41篇
  2005年   33篇
  2004年   41篇
  2003年   31篇
  2002年   24篇
  2001年   11篇
  2000年   5篇
  1999年   11篇
  1998年   17篇
  1997年   13篇
  1996年   8篇
  1995年   7篇
  1994年   11篇
  1993年   11篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   9篇
  1983年   12篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1979年   14篇
  1978年   21篇
  1977年   9篇
  1976年   12篇
  1975年   11篇
  1974年   4篇
  1973年   9篇
  1970年   6篇
  1968年   4篇
排序方式: 共有802条查询结果,搜索用时 125 毫秒
1.
2.
3.
Induction of spherule formation in Physarum polycephalum by polyols   总被引:2,自引:1,他引:1       下载免费PDF全文
A method has been developed for inducing spherule formation (spherulation) in the myxomycete Physarum polycephalum by transferring the culture to synthetic medium containing 0.5 m mannitol or other polyols. This morphogenetic process occurred within 12 to 35 hr after the inducer was added. The mature spherules existed as distinct morphogenetic units, in contrast to the clusters of spherules formed during starvation. Ninety per cent of the spherules germinated by 24 hr in synthetic medium. The changes in the synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein during plasmodial growth, spherulation, and germination of spherules are described. When spherule formation was completed, RNA, protein, and DNA decreased, compared with the values at the beginning of the conversion. The incorporation of (3)H-uridine into trichloroacetic acid-insoluble material was different in each of these periods, and this incorporation was sensitive to actinomycin D. The amount of glycogen increased during growth, whereas it decreased during spherulation. (14)C-glucose could be taken up by the cells in the presence of the inducer, and mannitol could not replace glucose as a source of energy. The mode of action of mannitol and its mechanism of induction are discussed.  相似文献   
4.
Production of phaseollin was measured in cell suspension cultures and whole plants of Phaseolus vulgaris. In suspension cultures phaseollin appeared when there was no further increase in cell mass. Cells transferred to a medium without auxins yielded three times higher phaseollin concentrations than cells grown in their presence. Addition of autoclaved fungal mycelia or polysaccharides as elicitors resulted in an increased phaseollin concentration in the cell suspension.In whole plants phaseollin could be detected only after the plants were challenged by a fungus which caused lesions (browning) of the upper root neck region, Rhizoctonia solani. Treatment of non-infected plants with autoclaved fungal mycelia or other elicitors did not induce phaseollin production. However, when they were added before or together with the pathogenic fungus, the elicitors further increased phaseollin concentration in the root neck regions of the plants. This indicated that the pathogenic fungus was important for the penetration of the elicitors to inner plant tissues where phaseollin (and probably other phytoalexins) is produced.  相似文献   
5.
Summary A λ phage DNA library ofSerratia marcescens was constructed and a clone carrying the gene coding for chitobiase (E.C.3.2.1.29) was isolated and characterized. Deletion analysis limited the cloned region to 4.5 kb that is capable of efficient expression of chitobiase.Escherichia coli cells harboring a plasmid carrying the cloned gene express chitobiase constitutively. The molecular weight of the protein is about 95000 daltons. In exponentially growingE. coli cells the chitobiase enzyme was found to be secreted into the periplasm.  相似文献   
6.
7.
Summary In this work we have investigated the decolorization of the polymeric dye Poly-B411 by several fungi. Only fungi with known lignin degrading ability were able to decolorize the dye. Pleurotus ostreatus sp. florida decolorized the dye both in solid and liquid media. Decolorizing ability developed in the absence of the dye but only when the fungus had been previously cultivated on lignin containing substrates.The work was supported by a grant from the Charles Wolfson Trust  相似文献   
8.
Chemical Detection of Microbial Prey by Bacterial Predators   总被引:5,自引:3,他引:2       下载免费PDF全文
A motile, predacious bacterium which degraded Pythium debaryanum was strongly attracted to substances released into the medium by the fungus. A nonpredacious bacterium was not attracted to these substances. The predator bacterium was specifically attracted to cellulose and its oligomers which are known to be components of the cell wall of Pythium. Ethanol inhibited chemotaxis of the bacterium without affecting either its motility or its ability to degrade cellulose. A second predacious bacterium was isolated for the alga, Skeletonema costatum. The role of chemoreception in the detection of microbial prey by bacterial predators in natural habitats is discussed.  相似文献   
9.
10.
In Vivo Expression of Inducible Nitric Oxide Synthase in Cerebellar Neurons   总被引:7,自引:2,他引:5  
Abstract: In the CNS, nitric oxide (NO) functions as both neuromodulator and neurotoxic agent. In vivo neuronal expression of NO synthase (NOS) has been attributed to constitutive NOS—both the neuronal and the endothelial types. The other class of NOS—the inducible NOS (iNOS)—is known to mediate toxic effects of NO in various tissues. In this study, we show for the first time that direct intracerebellar injection of endotoxin and cytokine (lipopolysaccharide and interferon-γ) induced in vivo neuronal expression of the iNOS gene, as demonstrated by fluorescent in situ hybridization and immunohistochemical staining analyzed by confocal laser-scanning microscopy. This raises the possibility that neuronal iNOS might contribute significantly to the vulnerability of the brain to various insults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号